

BIHARMONIC SUBMANIFOLDS IN SPHERES

BY

R. CADDEO* AND S. MONTALDO**

*Università degli Studi di Cagliari, Dipartimento di Matematica
Via Ospedale 72, 09124 Cagliari, Italy
e-mail: caddeo@unica.it, montaldo@unica.it*

AND

C. ONICIUC†

*Faculty of Mathematics, University "AL.I.Cuza" Iasi
Bd. Copou Nr. 11, 6600 Iasi, Romania
e-mail: oniciucc@uaic.ro*

ABSTRACT

We give some methods to construct examples of nonharmonic biharmonic submanifolds of the unit n -dimensional sphere S^n . In the case of curves in S^n we solve explicitly the biharmonic equation.

1. Introduction

Harmonic maps $\phi: (M, g) \rightarrow (N, h)$ between Riemannian manifolds are the critical points of the energy $E(\phi) = \frac{1}{2} \int_M |d\phi|^2 v_g$, and they are therefore the solutions of the corresponding Euler–Lagrange equation for the energy. This equation is given by the vanishing of the tension field $\tau(\phi) = \text{trace } \nabla d\phi$. As suggested by J. Eells and J. H. Sampson in [6], we can define the **bienergy** of a map ϕ by

* The first author was supported by G.N.S.A.G.A., Italy.

** The second author was supported by “Contratto giovani ricercatori”, University of Cagliari and by G.N.S.A.G.A., Italy.

† The third author was supported by a NATO Guest fellowship grant and the grant 6186/25.X.2000, A.N.S.T.I., România.

Received March 15, 2001

$E_2(\phi) = \frac{1}{2} \int_M |\tau(\phi)|^2 v_g$, and say that ϕ is **biharmonic** if it is a critical point of the bienergy.

In [9, 10] G. Y. Jiang derived the first variation formula of the bienergy showing that the Euler–Lagrange equation for E_2 is

$$(1.1) \quad \tau_2(\phi) = J(\tau(\phi)) = 0,$$

where J is the Jacobi operator of ϕ . The equation $\tau_2(\phi) = 0$ is called the **biharmonic equation**.

In a different setting, in [2], B. Y. Chen defined biharmonic submanifolds of the Euclidean space as those with harmonic mean curvature vector, and stated the conjecture that any biharmonic submanifold of \mathbb{R}^n is harmonic. As yet the conjecture has not been either proved or disproved, although some positive answers are known (see, for example, [5, 8]).

If we consider the biharmonic equation $\tau_2(\phi) = 0$ for isometric immersions into the Euclidean space we recover Chen’s notion of biharmonic submanifolds, so the two definitions agree.

More generally, for biharmonic maps in a manifold with nonpositive sectional curvature, some nonexistence theorems have been already proved. For example, in [10], G.Y. Jiang proved that any biharmonic map from a compact orientable manifold to a manifold with nonpositive sectional curvature is harmonic. In the case of submanifolds, the third author, in [12], has proved that any biharmonic submanifold with constant mean curvature in a manifold with nonpositive sectional curvature is harmonic, i.e., minimal.

In the case $\dim N = \dim M + 1$ the above results of G. Y. Jiang and the third author are still true with the weaker assumption that the Ricci curvature is nonpositive [12].

The first part of this paper is devoted to proving some new results of nonexistence of nonharmonic biharmonic maps to a manifold with constant negative sectional curvature.

Next, we consider the problem of finding examples of nonharmonic biharmonic submanifolds of a manifold with *positive* sectional curvature. The case of \mathbb{S}^3 has been studied in [1], where the authors have given the classification of nonharmonic biharmonic submanifolds. They are: circles, spherical helices and parallel spheres.

The goal of this paper is to study nonharmonic biharmonic submanifolds of \mathbb{S}^n , for $n > 3$. In this case the family of such submanifolds is much larger. In fact, any minimal submanifold of a certain parallel hypersphere of \mathbb{S}^n is a nonharmonic

biharmonic submanifold of \mathbb{S}^n (Theorem 3.5). Therefore, by using known minimal submanifolds, we can produce a large class of nonharmonic biharmonic submanifolds. For example, as a consequence of a well known result of Lawson ([11]), it turns out that there exist closed orientable nonminimal biharmonic surfaces of arbitrary genus in \mathbb{S}^4 . On the other hand, the minimal Veronese embedding of $P^2(\mathbb{R})$ in \mathbb{S}^4 produces a nonorientable nonminimal biharmonic submanifold in \mathbb{S}^5 .

In the last section we write down explicitly and solve the biharmonic equation for curves in \mathbb{S}^n .

NOTATION. We shall place ourselves in the C^∞ category, i.e., manifolds, metrics, connections, maps will be assumed to be smooth. By (M^m, g) we shall indicate a connected manifold of dimension m , without boundary, endowed with a Riemannian metric g . We shall denote by ∇ the Levi-Civita connection on (M, g) . For vector fields X, Y, Z on M we define the Riemann curvature operator by $R(X, Y)Z = [\nabla_X, \nabla_Y]Z - \nabla_{[X, Y]}Z$. The indices i, j, k, l take the values $1, 2, \dots, m$.

ACKNOWLEDGEMENT: The third author wishes to thank the Italian C.N.R. for a fellowship which made possible his stay in the University of Cagliari, and the Department of Mathematics of the University of Cagliari for the hospitality.

2. Nonexistence theorems

Let $\phi: (M, g) \rightarrow (N, h)$ be a smooth map between two Riemannian manifolds. The tension field of ϕ is given by $\tau(\phi) = \text{trace } \nabla d\phi$, and, for any compact domain $\Omega \subseteq M$, the **bienergy** is defined by

$$E_2(\phi) = \frac{1}{2} \int_{\Omega} |\tau(\phi)|^2 v_g.$$

Then we call **biharmonic** a smooth map ϕ which is a critical point of the bienergy functional for any compact domain $\Omega \subseteq M$. As we said in the introduction, we have for the bienergy the following first variation formula:

$$\frac{dE_2(\phi_t)}{dt} \Big|_{t=0} = \int_{\Omega} \langle \tau_2(\phi), V \rangle v_g,$$

where v_g is the volume element, while V is the variational vector field along ϕ , and

$$(2.1) \quad \tau_2(\phi) = -\Delta \tau(\phi) - \text{trace } R^N(d\phi, \tau(\phi))d\phi.$$

Using a standard argument of the theory of strongly elliptic operators (see, for example, [13]), we have

PROPOSITION 2.1: *Let $\phi: (M, g) \rightarrow (N, h)$ be a biharmonic map. If ϕ is harmonic on an open subset U of M , then ϕ is harmonic.*

COROLLARY 2.2: *Let $\phi: (M, g) \rightarrow (N, h)$ be a biharmonic map. If ϕ is constant on an open subset U of M , then ϕ is constant.*

From now on, in this section, we take as N a manifold $N(-1)$ of constant negative sectional curvature -1 and we consider the canonical inclusion $\mathbf{i}: M \rightarrow N(-1)$ of a submanifold M of N .

In order to study the biharmonicity of \mathbf{i} , first of all we denote by B the second fundamental form, by A the shape operator, by H the mean curvature vector field of M in $N(-1)$, while ∇^\perp is the normal connection and Δ^\perp is the Laplacian in the normal bundle of M . Then we have

THEOREM 2.3: *The inclusion map $\mathbf{i}: M \rightarrow N(-1)$ is biharmonic if and only if*

$$(2.2) \quad \begin{cases} -\Delta^\perp H - \text{trace } B(-, A_H -) - mH = 0, \\ 2 \text{trace } A_{\nabla_{(-)}^\perp H}(-) + \frac{m}{2} \text{grad}(|H|^2) = 0. \end{cases}$$

Proof: Since

$$\text{trace } R^N(d\mathbf{i}, \tau(\mathbf{i}))d\mathbf{i} = m\tau(\mathbf{i}),$$

the map \mathbf{i} is biharmonic if and only if

$$(2.3) \quad \tau_2(\mathbf{i}) = \text{trace } \nabla d\tau(\mathbf{i}) - m\tau(\mathbf{i}) = m\{\text{trace } \nabla dH - mH\} = 0.$$

By a straightforward computation we obtain

$$\text{trace } \nabla dH = -\Delta^\perp H - \text{trace } B(-, A_H -) - 2 \text{trace } A_{\nabla_{(-)}^\perp H}(-) - \frac{m}{2} \text{grad}(|H|^2).$$

Therefore, by replacing the value of $\text{trace } \nabla dH$ in (2.3), we have that \mathbf{i} is biharmonic if and only if

$$(2.4) \quad -\Delta^\perp H - \text{trace } B(-, A_H -) - mH = 2 \text{trace } A_{\nabla_{(-)}^\perp H}(-) + \frac{m}{2} \text{grad}(|H|^2).$$

Since the left-hand side of (2.4) is normal to M and the right-hand side of (2.4) is tangent, the theorem follows. ■

We shall use the above theorem to prove that, in some cases, biharmonicity and harmonicity are equivalent.

We first consider pseudo-umbilical submanifolds, that is, submanifolds satisfying $A_H = |H|^2 I$. We have

THEOREM 2.4: *Let M be an m -dimensional pseudo-umbilical submanifold of $N(-1)$ with $m \neq 4$. Then M is biharmonic if and only if it is harmonic.*

Proof: Let $\{x^i\}_{i=1}^m$ be a system of normal coordinates around an arbitrary point $p \in M$, and let e_i be the corresponding coordinate vector fields. At p we have

$$\text{trace } A_{\nabla_{(-)}^\perp H}(-) = \sum_i \nabla_{e_i} A_H(e_i) - \frac{m}{2} \text{grad}(|H|^2).$$

Since M is pseudo-umbilical, the first term in the right-hand side is

$$\begin{aligned} \sum_i \nabla_{e_i} A_H(e_i) &= \sum_i \nabla_{e_i} (|H|^2 e_i) = \sum_i e_i |H|^2 e_i \\ &= \text{grad}(|H|^2), \end{aligned}$$

and therefore

$$(2.5) \quad \text{trace } A_{\nabla_{(-)}^\perp H}(-) = \left(1 - \frac{m}{2}\right) \text{grad}(|H|^2).$$

Finally, substituting (2.5) in the second equation of (2.2) we obtain

$$(4 - m) \text{grad}(|H|^2) = 0,$$

so, for $m \neq 4$, the mean curvature $|H|$ is constant. Since any biharmonic submanifold with constant mean curvature in a manifold with nonpositive sectional curvature is harmonic (see [12]), we have the theorem. \blacksquare

In particular we have

COROLLARY 2.5: *Let $\gamma: I \rightarrow N(-1)$ be a curve parametrized by arc length. Then γ is biharmonic if and only if it is harmonic.*

In [3], B. Y. Chen and S. Ishikawa have proved that any biharmonic surface of the Euclidean 3-dimensional space is minimal, i.e., harmonic. The following theorem shows that the Chen–Ishikawa theorem remains true if we substitute the ordinary space with any 3-dimensional space with constant negative sectional curvature.

THEOREM 2.6: *Let M be a surface of $N^3(-1)$. Then M is biharmonic if and only if it is harmonic.*

Proof: Assume that M is a biharmonic submanifold. Suppose that M is non-harmonic. We shall prove that the mean curvature is constant, which means that

M is minimal. For this we shall follow closely the proof given by B. Y. Chen and S. Ishikawa, in [3], for biharmonic surfaces of \mathbb{R}^3 .

Let $\{X_1, X_2\}$ be a local orthonormal frame field on M and let η be a unitary normal vector field. Assume that $H = f\eta$, where $f \in C^\infty(M)$ and $f > 0$. In this case conditions (2.2) become

$$(2.6) \quad \Delta f = (-2 - |A|^2)f,$$

$$(2.7) \quad A(\text{grad } f) + f \text{ grad } f = 0.$$

Let $U = \{p \in M | (\text{grad } f^2)(p) \neq 0\}$. We shall show that $U = \emptyset$.

Assume that $U \neq \emptyset$ and put

$$X_1 = \frac{\text{grad } f}{|\text{grad } f|}.$$

We have

$$(2.8) \quad X_2 f = 0, \quad \text{grad } f = (X_1 f)X_1,$$

and the second fundamental form B of M is given by

$$(2.9) \quad B(X_1, X_1) = -f\eta, \quad B(X_1, X_2) = 0, \quad B(X_2, X_2) = 3f\eta,$$

so

$$(2.10) \quad |A|^2 = 10f^2.$$

Since $N^3(-1)$ has constant sectional curvature and M is a hypersurface, the Codazzi equation gives

$$(2.11) \quad X_2 f = -4f\omega_2^1(X_1), \quad 3X_1 f = -4f\omega_1^2(X_2),$$

where $\{\omega^1, \omega^2\}$ are the 1-forms dual of $\{X_1, X_2\}$ and ω_i^j are the connection 1-forms given by $\nabla X_i = \omega_i^j X_j$. Now, (2.8) and (2.11) imply that $\omega_2^1(X_1) = 0$ and $d\omega^1 = 0$. Thus, locally, ω^1 is exact, that is, $\omega^1 = du$ for some function u . Since $df = (X_1 f)\omega^1 + (X_2 f)\omega^2$, and $X_2 f = 0$, we have that $df \wedge \omega^1 = 0$; this means that f is a function of u . Denoting by f' and f'' the first and second derivatives of f with respect to u , the second formula of (2.11) implies

$$(2.12) \quad 4f\omega_1^2 = -3f'\omega^2.$$

Again, (2.8) and (2.11) give

$$(2.13) \quad 4f\Delta f = 3(f')^2 - 4ff'',$$

and, from (2.6) and (2.10), we obtain

$$(2.14) \quad 4ff'' - 3(f')^2 - 8f^2 - 40f^4 = 0.$$

If we put $(f')^2 = y$, condition (2.14) gives

$$(2.15) \quad 2f \frac{dy}{df} - 3y = 40f^4 + 8f^2,$$

which implies

$$(2.16) \quad (f')^2 = 8f^4 + 8f^2 + Cf^{3/2},$$

for some constant C .

On the other hand, the Gauss equation

$$K = -1 + \det A$$

gives

$$(2.17) \quad \begin{cases} K = -1 - 3f^2 \\ d\omega_1^2 = -K\omega^1 \wedge \omega^2 \end{cases}$$

where K is the Gaussian curvature of M . From (2.9), (2.12) and (2.17), we obtain

$$(2.15) \quad 4ff'' - 7(f')^2 + 16f^4 + \frac{16}{3}f^2 = 0.$$

But (2.14) and (2.18) imply

$$(2.19) \quad (f')^2 = 14f^4 + \frac{10}{3}f^2.$$

Summing up, conditions (2.16) and (2.19) together say that f must satisfy a polynomial equation with constant coefficients, that is, f is constant. Hence, M has constant mean curvature. ■

From Theorem 2.6 and Corollary 2.5 we have

THEOREM 2.7: *Let M be a submanifold of $N^3(-1)$. Then M is biharmonic if and only if it is harmonic.*

3. Biharmonic submanifolds of \mathbb{S}^n

The following example arises in the early works on biharmonic maps.

Example 3.1: [9, 10]. Let m_1, m_2 be two positive integers such that $m = m_1 + m_2$, and let r_1, r_2 be two positive real numbers such that $r_1^2 + r_2^2 = 1$. Then we have two cases:

1. $m_1 \neq m_2$, and $\mathbb{S}^{m_1}(r_1) \times \mathbb{S}^{m_2}(r_2)$ is a nonharmonic biharmonic submanifold of \mathbb{S}^{m+1} if and only if $r_1 = r_2 = 1/\sqrt{2}$;
2. $m_1 = m_2 = q$, and the following statements are equivalent:
 - $\mathbb{S}^q(r_1) \times \mathbb{S}^q(r_2)$ is a biharmonic submanifold of \mathbb{S}^{2q+1} .
 - $\mathbb{S}^q(r_1) \times \mathbb{S}^q(r_2)$ is a harmonic submanifold of \mathbb{S}^{2q+1} .
 - $r_1 = r_2 = 1/\sqrt{2}$.

Note that in the case of \mathbb{S}^3 the above example gives the minimal Clifford torus: in fact, as mentioned in the introduction, the only nonminimal biharmonic surfaces of \mathbb{S}^3 are the parallel spheres of radius $1/\sqrt{2}$.

The next example was given by the authors in [1].

Example 3.2: Let $M = \mathbb{S}^m(a) \times \{b\} = \{p = (x^1, \dots, x^{m+1}, b), |(x^1)^2 + \dots + (x^{m+1})^2 = a^2, a^2 + b^2 = 1, 0 < a < 1\}$ be a parallel hypersphere of \mathbb{S}^{m+1} . Then $M = \mathbb{S}^m(a) \times \{b\}$ is a biharmonic submanifold of \mathbb{S}^{m+1} if and only if $a = 1/\sqrt{2}$ and $b = \pm 1/\sqrt{2}$.

Note that the manifold $\mathbb{S}^{m_1}(1/\sqrt{2}) \times \mathbb{S}^{m_2}(1/\sqrt{2})$, $m_1 \neq m_2$, is not a pseudo-umbilical submanifold of \mathbb{S}^{m+1} , while the manifold $\mathbb{S}^m(a) \times \{b\}$ is pseudo-umbilical.

Except for these, so far we have not seen in the literature other examples of nonharmonic biharmonic submanifolds of the unit sphere \mathbb{S}^n .

In this section we propose some methods to construct new examples of biharmonic submanifolds. We first recall the following result.

THEOREM 3.3 ([12]): *Let M be a submanifold of \mathbb{S}^n and let $\mathbf{i}: M \rightarrow \mathbb{S}^n$ be the canonical inclusion. Then the map \mathbf{i} is biharmonic if and only if*

$$(3.1) \quad \begin{cases} -\Delta^\perp H - \text{trace } B(-, A_H -) + mH = 0, \\ 2 \text{trace } A_{\nabla_{(-)}^\perp H}(-) + \frac{m}{2} \text{grad}(|H|^2) = 0. \end{cases}$$

From Theorem 3.3, which is the analogue for \mathbb{S}^n of Theorem 2.3, it follows immediately that a pseudo-umbilical submanifold of \mathbb{S}^n whose mean curvature vector field is unitary and parallel is biharmonic. It is noteworthy that such a submanifold is actually harmonic in a hypersphere of \mathbb{S}^n , as shown in the following

THEOREM 3.4: *Let M be a pseudo-umbilical submanifold of \mathbb{S}^n with mean vector field parallel and of norm equal to 1. Then*

1. *M is biharmonic in \mathbb{S}^n ;*
2. *M is a minimal submanifold in a hypersphere $\mathbb{S}^{n-1}(1/\sqrt{2}) \subset \mathbb{S}^n$.*

Proof: We will use an idea of B. Y. Chen and K. Yano (see [4]). We denote by \tilde{H} the mean curvature vector field of M in \mathbb{R}^{n+1} . Then, for every $p \in M$, we have $\tilde{H}(p) = H(p) - p$, and for any vector field X tangent to M ,

$$\begin{aligned}\nabla_X^{\mathbb{R}^{n+1}} \tilde{H} &= \tilde{\nabla}_X^\perp \tilde{H} - \tilde{A}_{\tilde{H}}(X) \\ &= (\nabla_X^{\mathbb{S}^n} H - \langle X, H \rangle p) - \nabla_X^{\mathbb{R}^{n+1}} p \\ &= \nabla_X^\perp H - A_H(X) - X.\end{aligned}$$

Thus, by the hypothesis in the statement of the theorem, we have

$$\tilde{\nabla}^\perp \tilde{H} = \nabla^\perp H = 0 \quad \text{and} \quad \tilde{A}_{\tilde{H}} = 2I.$$

Now we consider the map $\Psi \in C^\infty(M; \mathbb{R}^{n+1})$ given by $\Psi(p) = p + \frac{1}{2}\tilde{H}(p)$. We have

$$X(\Psi) = \nabla_X^{\mathbb{R}^{n+1}} \Psi = \nabla_X^{\mathbb{R}^{n+1}} p + \frac{1}{2} \nabla_X^{\mathbb{R}^{n+1}} \tilde{H} = 0,$$

so Ψ is a constant vector.

Consequently

$$|p - \Psi|^2 = \frac{1}{4} |\tilde{H}|^2 = \frac{1}{2}.$$

Thus $M \subset \mathbb{S}^n(\Psi; 1/\sqrt{2})$. Since $|\Psi| = 1/\sqrt{2}$, without loss of generality we can assume that $\Psi = (0, \dots, 0, 1/\sqrt{2}) \in \mathbb{R}^{n+1}$; so $M \subset \mathbb{S}^n(\Psi; 1/\sqrt{2}) \cap \mathbb{S}^n = \mathbb{S}^{n-1}(1/\sqrt{2}) \times \{1/\sqrt{2}\}$.

Finally, since for every $p \in M$, the vector $(p - \Psi)$ is parallel to $\tilde{H}(p)$, it follows that M is harmonic in $\mathbb{S}^n(\Psi; 1/\sqrt{2})$, and therefore, it is harmonic in $\mathbb{S}^{n-1}(1/\sqrt{2}) \times \{1/\sqrt{2}\}$. ■

The last theorem suggests that in order to find nonharmonic biharmonic submanifolds of \mathbb{S}^n , we can search through harmonic submanifolds in hyperspheres. In fact we have the following

THEOREM 3.5: *Let M be a harmonic submanifold of $\mathbb{S}^n(a) \times \{b\}$, where $a^2 + b^2 = 1$, $0 < a < 1$. Then M is a nonharmonic biharmonic submanifold in \mathbb{S}^{n+1} if and only if $a = 1/\sqrt{2}$ and $b = \pm 1/\sqrt{2}$.*

Proof: With respect to the standard Euclidean scalar product $\langle \cdot, \cdot \rangle$ and to the rectangular coordinates (x^i) of \mathbb{R}^{n+2} , the set of sections of the tangent bundle of

$\mathbb{S}^n(a) \times \{b\}$ is

$$\{X = (X^1, \dots, X^{n+1}, 0) \in \mathbb{R}^{n+2} \mid x^1 X^1 + \dots + x^{n+1} X^{n+1} = 0\}.$$

Let now $\xi = (x^1, \dots, x^{n+1}, -a^2/b)$ and $p = (x^1, \dots, x^{n+1}, b)$. Then we have

$$\langle \xi, X \rangle = 0, \quad \langle \xi, p \rangle = 0, \quad |\xi|^2 = a^2 + a^4/b^2 = c^2, \quad c > 0,$$

and therefore ξ is a section of the normal bundle of $\mathbb{S}^n(a) \times \{b\}$ in \mathbb{S}^{n+1} . If we put $\eta = \frac{1}{c}\xi$ we have

$$\begin{aligned} \nabla_X^{\mathbb{S}^{n+1}} \eta &= \nabla_X^\perp \eta - A(X) \\ &= \frac{1}{c} \nabla_X^{\mathbb{S}^{n+1}} \xi = \frac{1}{c} \{ \nabla_X^{\mathbb{R}^{n+2}} \xi + \langle \xi, X \rangle p \} \\ &= \frac{1}{c} \nabla_{(X^1, \dots, X^{n+1}, 0)}^{\mathbb{R}^{n+2}} (x^1, \dots, x^{n+1}, -a^2/b) \\ &= \frac{1}{c} X. \end{aligned}$$

This implies that $A = -\frac{1}{c}I$ and $\nabla^\perp \eta = 0$.

We denote by $\mathbf{i}: M \rightarrow \mathbb{S}^n(a) \times \{b\}$ and $\mathbf{i}_1: \mathbb{S}^n(a) \times \{b\} \rightarrow \mathbb{S}^{n+1}$ the inclusion maps. Let $\{X_i\}_{i=1}^m$ be a geodesic frame field around an arbitrary point $p \in M$. At p we have

$$\tau(\mathbf{i}_1 \circ \mathbf{i}) = \sum_{i=1}^m \nabla d\mathbf{i}_1(X_i, X_i) = \sum_i -\frac{1}{c} \langle X_i, X_i \rangle \eta = -\frac{m}{c} \eta \neq 0,$$

and

$$\begin{aligned} \tau_2(\mathbf{i}_1 \circ \mathbf{i}) &= -\Delta \tau(\mathbf{i}_1 \circ \mathbf{i}) + m\tau(\mathbf{i}_1 \circ \mathbf{i}) \\ &= \sum_i \nabla_{X_i}^{\mathbb{S}^{n+1}} \nabla_{X_i}^{\mathbb{S}^{n+1}} \left(-\frac{m}{c} \eta \right) - \frac{m^2}{c} \eta \\ &= -\frac{m}{c} \sum_i \nabla_{X_i}^{\mathbb{S}^{n+1}} [\nabla_{X_i}^\perp \eta - A(X_i)] - \frac{m^2}{c} \eta \\ &= -\frac{m}{c^2} \sum_i \nabla_{X_i}^{\mathbb{S}^{n+1}} X_i - \frac{m^2}{c} \eta \\ &= \frac{m^2}{c} \left(\frac{1}{c^2} - 1 \right) \eta. \end{aligned}$$

Hence the composition cannot be harmonic and it is biharmonic if and only if $a = 1/\sqrt{2}$ and $b = \pm 1/\sqrt{2}$. \blacksquare

Remark 3.6: Note that if M is harmonic in $\mathbb{S}^n(1/\sqrt{2})$, then it is automatically pseudo-umbilical in \mathbb{S}^{n+1} ; moreover, $\nabla^\perp\tau(\mathbf{i}_1 \circ \mathbf{i}) = 0$ and $|\tau(\mathbf{i}_1 \circ \mathbf{i})| = m$.

Since the radial projection

$$\mathbb{S}^n \rightarrow \mathbb{S}^n(r) \quad x \mapsto rx, \quad r > 0,$$

is homothetic, all harmonic submanifolds in \mathbb{S}^n become, after radial projection, harmonic submanifolds in $\mathbb{S}^n(1/\sqrt{2})$. Thus, combining Theorem 3.5 and a well known result of H. B. Lawson, which states that there exist closed orientable embedded minimal surfaces of arbitrary genus in \mathbb{S}^3 (see [11]), we have

THEOREM 3.7: *There exist closed orientable embedded nonminimal biharmonic surfaces of arbitrary genus in \mathbb{S}^4 .*

This shows the existence of an abundance of biharmonic surfaces in \mathbb{S}^4 , in contrast with the case of \mathbb{S}^3 .

Example 3.8: To obtain a nonorientable example we consider the Veronese surface in \mathbb{S}^4 . The map $\phi: \mathbb{R}^3 \rightarrow \mathbb{R}^6$ given by

$$\begin{aligned} \phi(x^1, x^2, x^3) = & \left(\frac{1}{\sqrt{6}}x^2x^3, \frac{1}{\sqrt{6}}x^1x^3, \frac{1}{\sqrt{6}}x^1x^2, \right. \\ & \left. \frac{1}{2\sqrt{6}}((x^1)^2 - (x^2)^2), \frac{1}{6\sqrt{2}}((x^1)^2 + (x^2)^2 - 2(x^3)^2), 1/\sqrt{2} \right) \end{aligned}$$

defines a nonminimal biharmonic embedding of $P^2(\mathbb{R})$ in \mathbb{S}^5 .

At first sight it could seem possible to construct biharmonic submanifolds in \mathbb{S}^{n+1} from a nonminimal submanifold in $\mathbb{S}^n(1/\sqrt{2}) \times \{\pm 1/\sqrt{2}\}$. The following theorem shows that this is not the case.

THEOREM 3.9: *Assume that M is a submanifold in $\mathbb{S}^n(1/\sqrt{2}) \times \{\pm 1/\sqrt{2}\}$. Then M is biharmonic in \mathbb{S}^{n+1} if and only if it is harmonic in $\mathbb{S}^n(1/\sqrt{2}) \times \{\pm 1/\sqrt{2}\}$.*

Proof: If $M \subset \mathbb{S}^n(a) \times \{b\}$, we have $\tau(\mathbf{i}_1 \circ \mathbf{i}) = \tau(\mathbf{i}) - \frac{m}{c}\eta \neq 0$ and

$$(3.5) \quad \tau_2(\mathbf{i}_1 \circ \mathbf{i}) = \tau_2(\mathbf{i}) + m\left(1 - \frac{1}{a^2}\right)\tau(\mathbf{i}) + \frac{1}{c}\left\{|\tau(\mathbf{i})|^2 - \frac{m^2}{c^2}(c^2 - 1)\right\}\eta.$$

When $a = 1/\sqrt{2}$ and $b = \pm 1/\sqrt{2}$ condition (3.2) reduces to

$$\tau_2(\mathbf{i}_1 \circ \mathbf{i}) = \tau_2(\mathbf{i}) - m\tau(\mathbf{i}) + |\tau(\mathbf{i})|^2\eta. \quad \blacksquare$$

The same argument as in Theorem 3.5 leads to the following

PROPOSITION 3.10: *Let M be a harmonic submanifold of $\mathbb{S}^{n_1}(r_1)$, with $0 < m < n_1$, or $M = \mathbb{S}^{n_1}(r_1)$, and let $b \in \mathbb{S}^{n_2}(r_2)$, where $r_1^2 + r_2^2 = 1$ and $n = n_1 + n_2$. Then $M \times \{b\}$ is harmonic in $\mathbb{S}^{n_1}(r_1) \times \mathbb{S}^{n_2}(r_2)$, and nonharmonic biharmonic in \mathbb{S}^{n+1} if and only if $r_1 = r_2 = 1/\sqrt{2}$.*

The biharmonic submanifolds that we have produced so far are all pseudo-umbilical. We want now to find examples of biharmonic submanifolds in \mathbb{S}^n that are not of this type.

With this aim, let n_1, n_2 be two positive integers such that $n = n_1 + n_2$, and let r_1, r_2 be two positive real numbers such that $r_1^2 + r_2^2 = 1$. Let M_1 be a minimal submanifold of $\mathbb{S}^{n_1}(r_1)$ of dimension m_1 , with $0 < m_1 < n_1$, and let M_2 be a minimal submanifold of $\mathbb{S}^{n_2}(r_2)$ of dimension m_2 , with $0 < m_2 < n_2$. Then we have the following

THEOREM 3.11: *The manifold $M_1 \times M_2$ is a nonharmonic biharmonic submanifold of \mathbb{S}^{n+1} if and only if $r_1 = r_2 = 1/\sqrt{2}$ and $m_1 \neq m_2$.*

Proof. The proof is similar to that of Theorem 3.5. ■

Remark 3.12: When $r_1 = r_2 = 1/\sqrt{2}$ and $m_1 \neq m_2$, $M_1 \times M_2$ is not pseudo-umbilical in \mathbb{S}^{n+1} .

Finally, as in Theorem 3.9, we obtain

THEOREM 3.13: *Let n_1, n_2 be two positive integers such that $n = n_1 + n_2$, and let M_1 be a submanifold of $\mathbb{S}^{n_1}(1/\sqrt{2})$ of dimension m_1 , with $0 < m_1 < n_1$, and let M_2 be a submanifold of $\mathbb{S}^{n_2}(1/\sqrt{2})$ of dimension m_2 , with $0 < m_2 < n_2$. Then $M_1 \times M_2$ is biharmonic in \mathbb{S}^{n+1} if and only if*

$$\begin{cases} \tau_2(\mathbf{i}_1) + (m_2 - m_1)\tau(\mathbf{i}_1) = 0, \\ \tau_2(\mathbf{i}_2) + (m_1 - m_2)\tau(\mathbf{i}_2) = 0, \\ |\tau(\mathbf{i}_1)| = |\tau(\mathbf{i}_2)|, \end{cases}$$

where $\mathbf{i}_1: M_1 \rightarrow \mathbb{S}^{n_1}(1/\sqrt{2})$ and $\mathbf{i}_2: M_2 \rightarrow \mathbb{S}^{n_2}(1/\sqrt{2})$ are the canonical inclusions.

Of course, if M_1 is harmonic in $\mathbb{S}^{n_1}(1/\sqrt{2})$, then $M_1 \times M_2$ is biharmonic in \mathbb{S}^{n+1} if and only if M_2 is harmonic in $\mathbb{S}^{n_2}(1/\sqrt{2})$.

4. Biharmonic curves in \mathbb{S}^n

In this last section we consider biharmonic curves in \mathbb{S}^n . In order to derive the differential equation of nonharmonic biharmonic curves we prove the following

PROPOSITION 4.1: Let $\phi: (M, g) \rightarrow \mathbb{S}^n$ be a Riemannian immersion and let $\varphi = \mathbf{i} \circ \phi$, where $\mathbf{i}: \mathbb{S}^n \rightarrow \mathbb{R}^{n+1}$ is the canonical inclusion. Then we have

$$(4.1) \quad \tau_2(\phi) = \tau_2(\varphi) + 2m\tau(\varphi) + \{2m^2 - |\tau(\varphi)|^2\}\varphi.$$

Proof: With respect to a system of normal coordinates with origin at an arbitrary point $p \in M$ we have, at p ,

$$(4.2) \quad \tau_2(\phi) = \sum_i \nabla_{d\phi(e_i)}^{\mathbb{S}^n} \nabla_{d\phi(e_i)}^{\mathbb{S}^n} \tau(\phi) + m\tau(\phi).$$

Since $\tau(\varphi) = \tau(\phi) - m\varphi$, we obtain

$$\begin{aligned} \nabla_{d\phi(e_i)}^{\mathbb{S}^n} \tau(\phi) &= \nabla_{d\varphi(e_i)}^{\mathbb{R}^{n+1}} \tau(\phi) - B(d\phi(e_i), \tau(\phi)) \\ &= \nabla_{d\varphi(e_i)}^{\mathbb{R}^{n+1}} \tau(\phi) = \nabla_{d\varphi(e_i)}^{\mathbb{R}^{n+1}} (\tau(\varphi) + mx), \end{aligned}$$

and therefore, at p , we have

$$\begin{aligned} \sum_i \nabla_{d\phi(e_i)}^{\mathbb{S}^n} \nabla_{d\phi(e_i)}^{\mathbb{S}^n} \tau(\phi) \\ &= \sum_i \{ \nabla_{d\varphi(e_i)}^{\mathbb{R}^{n+1}} \nabla_{d\varphi(e_i)}^{\mathbb{R}^{n+1}} (\tau(\varphi) + mx) - B(d\phi(e_i), \nabla_{d\phi(e_i)}^{\mathbb{S}^n} \tau(\phi)) \} \\ &= \tau_2(\varphi) + m\tau(\varphi) + \sum_i \langle d\phi(e_i), \nabla_{d\phi(e_i)}^{\mathbb{S}^n} \tau(\phi) \rangle \varphi. \end{aligned}$$

But

$$\begin{aligned} \sum_i \langle d\phi(e_i), \nabla_{d\phi(e_i)}^{\mathbb{S}^n} \tau(\phi) \rangle &= -|\tau(\phi)|^2 = -|\tau(\varphi) + m\varphi|^2 \\ &= -|\tau(\varphi)|^2 + m^2. \end{aligned}$$

Hence

$$\sum_i \nabla_{d\phi(e_i)}^{\mathbb{S}^n} \nabla_{d\phi(e_i)}^{\mathbb{S}^n} \tau(\phi) = \tau_2(\varphi) + m\tau(\varphi) + (-|\tau(\varphi)|^2 + m^2)\varphi.$$

Now we replace the value of $\sum_i \nabla_{d\phi(e_i)}^{\mathbb{S}^n} \nabla_{d\phi(e_i)}^{\mathbb{S}^n} \tau(\phi)$ in (4.2), and we obtain (4.1). \blacksquare

When M is a curve, the biharmonic equation given by the vanishing of (4.1) gives the desired differential equation.

COROLLARY 4.2: Let $\gamma: I \rightarrow \mathbb{S}^n \subset \mathbb{R}^{n+1}$ be a curve parametrized by arc length. Then γ is biharmonic in \mathbb{S}^n if and only if

$$(4.3) \quad \gamma^{IV} + 2\gamma'' + (1 - k_g^2)\gamma = 0,$$

where $k_g^2 = |\nabla_{\gamma}^{\mathbb{S}^n} \gamma'|^2$ is the square of the geodesic curvature of γ in \mathbb{S}^n .

Equation (4.3) can be integrated. This is because the geodesic curvature k_g of γ is constant.

PROPOSITION 4.3: *Let $\gamma: I \rightarrow \mathbb{S}^n \subset \mathbb{R}^{n+1}$ be a nonharmonic biharmonic curve parametrized by arc length. Then k_g is constant and $0 < |k_g| \leq 1$.*

Proof: From the second equation of (3.1) we obtain that k_g is constant. To prove that $0 < |k_g| \leq 1$, we put $T = \gamma'$ and $\tau(\gamma) = \nabla_T^{\mathbb{S}^n} T = k_g N$. Then $|T| = 1$ and $\langle N, T \rangle = 0$. Also, let $\nabla_T^{\mathbb{S}^n} N = fT + W$, where W is a vector field along γ such that $\langle W, T \rangle = 0$, and $f \in C^\infty(I)$. Then $f = -k_g$. Next, from

$$\nabla_T^{\mathbb{S}^n} \tau(\gamma) = -k_g^2 T + k_g W,$$

it follows that $A_{\tau(\gamma)}(T) = k_g^2 T$, where A is the shape operator, and $\nabla_T^{\perp} \tau(\gamma) = k_g W$. Since γ is biharmonic, we obtain

$$\Delta^{\perp} \tau(\gamma) = \tau(\gamma) - B(T, A_{\tau(\gamma)}(T)) = k_g(1 - k_g^2)N.$$

Now, from the Weitzenböck formula

$$\frac{1}{2} \Delta^{\perp} |\tau(\gamma)|^2 = \langle \Delta^{\perp} \tau(\gamma), \tau(\gamma) \rangle - |\nabla^{\perp} \tau(\gamma)|^2,$$

we get $1 - k_g^2 = |W|^2$, and this completes the proof. \blacksquare

Since k_g is constant, integration of (4.3) is possible and it yields the following

PROPOSITION 4.4: *Let $\gamma: I \rightarrow \mathbb{S}^n \subset \mathbb{R}^{n+1}$ be a curve parametrized by arc length. We have two classes of nonharmonic biharmonic curves in \mathbb{S}^n .*

1. When $k_g = 1$ they are circles parametrized by

$$\gamma(t) = \cos(\sqrt{2}t)c_1 + \sin(\sqrt{2}t)c_2 + c_4,$$

where c_1, c_2, c_4 are constant vectors orthogonal to each other with $|c_1|^2 = |c_2|^2 = |c_4|^2 = \frac{1}{2}$.

2. When $0 < k_g < 1$ they are curves that, following [7], we shall call helices, parametrized by

$$\gamma(t) = \cos(at)c_1 + \sin(bt)c_2 + \cos(bt)c_3 + \sin(bt)c_4,$$

where c_1, c_2, c_3 and c_4 are constant vectors orthogonal to each other with $|c_1|^2 = |c_2|^2 = |c_3|^2 = |c_4|^2 = \frac{1}{2}$, and $a^2 + b^2 = 2$, $a^2 \neq b^2$. In this case $k_g^2 = 1 - a^2b^2 \in (0, 1)$.

References

- [1] R. Caddeo, S. Montaldo and C. Oniciuc, *Biharmonic submanifolds of \mathbb{S}^3* , International Journal of Mathematics, to appear.
- [2] B.Y. Chen, *Some open problems and conjectures on submanifolds of finite type*, Soochow Journal of Mathematics **17** (1991), 169–188.
- [3] B. Y. Chen and S. Ishikawa, *Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces*, Kyushu Journal of Mathematics **52** (1998), 167–185.
- [4] B. Y. Chen and K. Yano, *Minimal submanifolds of a higher dimensional sphere*, Tensor (N.S.) **22** (1971), 369–373.
- [5] I. Dimitric, *Submanifolds of E^m with harmonic mean curvature vector*, Bulletin of the Institute of Mathematics. Academia Sinica **20** (1992), 53–65.
- [6] J. Eells and J.H. Sampson, *Harmonic mappings of Riemannian manifolds*, American Journal of Mathematics **86** (1964), 109–160.
- [7] H. Gluck, *Geodesics in the unit tangent bundle of a round sphere*, L'Enseignement Mathématique **34** (1988), 233–246.
- [8] T. Hasanis and T. Vlachos, *Hypersurfaces in \mathbb{E}^4 with harmonic mean curvature vector field*, Mathematische Nachrichten **172** (1995), 145–169.
- [9] G. Y. Jiang, *2-harmonic isometric immersions between Riemannian manifolds*, Chinese Annals of Mathematics. Series A **7** (1986), 130–144.
- [10] G. Y. Jiang, *2-harmonic maps and their first and second variational formulas*, Chinese Annals of Mathematics. Series A **7** (1986), 389–402.
- [11] H. B. Lawson, *Complete minimal surfaces in \mathbb{S}^3* , Annals of Mathematics (2) **92** (1970), 335–374.
- [12] C. Oniciuc, *Biharmonic maps between Riemannian manifolds*, Analele Stiintifice ale University Al. I. Cuza Iasi. Mat. (N.S.), to appear.
- [13] J. Simons, *Minimal varieties in Riemannian manifolds*, Annals of Mathematics **88** (1968), 62–105.