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ABSTRACT

We give some methods to construct examples of nonharmonic biharmonic
submanifolds of the unit n-dimensional sphere S™. In the case of curves
in 8™ we solve explicitly the biharmonic equation.

1. Introduction

Harmonic maps ¢: (M, g) = (N, h) between Riemannian manifolds are the criti-
cal points of the energy E(¢) = 1 |, o 1d|? vg, and they are therefore the solutions
of the corresponding Euler-Lagrange equation for the energy. This equation is
given by the vanishing of the tension field 7(¢) = trace Vd¢. As suggested by

J. Eells and J. H. Sampson in [6], we can define the bienergy of a map ¢ by
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E3(¢) =  [3,I7(¢)|?vy, and say that ¢ is biharmeonic if it is a critical point of
the bienergy.

In [9, 10] G. Y. Jiang derived the first variation formula of the bienergy showing
that the Euler-Lagrange equation for F, is

(1.1) 2(¢) = J(7(¢)) = 0,

where J is the Jacobi operator of ¢. The equation 72(¢) = 0 is called the
biharmonic equation.

In a different setting, in {2], B. Y. Chen defined biharmonic submanifolds of the
Euclidean space as those with harmonic mean curvature vector, and stated the
conjecture that any biharmonic submanifold of R™ is harmonic. As yet the con-
jecture has not been either proved or disproved, although some positive answers
are known (see, for example, [5, 8]).

If we consider the biharmonic equation 73(¢) = 0 for isometric immersions into
the Euclidean space we recover Chen’s notion of biharmonic submanifolds, so the
two definitions agree.

More generally, for biharmonic maps in a manifold with nonpositive sectional
curvature, some nonexistence theorems have been already proved. For example,
in [10], G.Y. Jiang proved that any biharmonic map from a compact orientable
manifold to a manifold with nonpositive sectional curvature is harmonic. In the
case of submanifolds, the third author, in [12], has proved that any biharmonic
submanifold with constant mean curvature in a manifold with nonpositive sec-
tional curvature is harmonic, i.e., minimal.

In the case dim N = dim M + 1 the above results of G. Y. Jiang and the
third author are still true with the weaker assumption that the Ricci curvature
in nonpositive [12].

The first part of this paper is devoted to proving some new results of non-
existence of nonharmonic biharmonic maps to a manifold with constant negative
sectional curvature.

Next, we consider the problem of finding examples of nonharmonic biharmonic
submanifolds of a manifold with positive sectional curvature. The case of S has
been studied in [1], where the authors have given the classification of nonhar-
monic biharmonic submanifolds. They are: circles, spherical helices and parallel
spheres.

The goal of this paper is to study nonharmonic biharmonic submanifolds of S™,
for n > 3. In this case the family of such submanifolds is much larger. In fact,
any minimal submanifold of a certain parallel hypersphere of S™ is a nonharmonic
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biharmonic submanifold of S™ (Theorem 3.5). Therefore, by using known mini-
mal submanifolds, we can produce a large class of nonharmonic biharmonic sub-
manifolds. For example, as a consequence of a well known result of Lawson ([11]),
it turns out that there exist closed orientable nonminimal biharmonic surfaces
of arbitrary genus in S%. On the other hand, the minimal Veronese embedding
of P%(R) in S* produces a nonorientable nonminimal biharmonic submanifold in
SS.

In the last section we write down explicitly and solve the biharmonic equation
for curves in S™.

NoTAaTiON. We shall place ourselves in the C™ category, i.e., manifolds,
metrics, connections, maps will be assumed to be smooth. By (M™, g) we shall
indicate a connected manifold of dimension m, without boundary, endowed with
a Riemannian metric g. We shall denote by V the Levi-Civita connection on
(M, g). For vector fields X,Y,Z on M we define the Riemann curvature opera-
tor by R(X,Y)Z = [Vx,Vy]Z — V(xy}Z. The indices i, j, k,l take the values
1,2,...,m.

ACKNOWLEDGEMENT: The third author wishes to thank the Italian C.N.R. for
a fellowship which made possible his stay in the University of Cagliari, and the
Department of Mathematics of the University of Cagliari for the hospitality.

2. Nonexistence theorems

Let ¢: (M,g) — (N, h) be a smooth map between two Riemannian manifolds.
The tension field of ¢ is given by 7(¢$) = trace Vde, and, for any compact domain
Q C M, the bienergy is defined by

B:0) = 5 [ 7@,

Then we call biharmonic a smooth map ¢ which is a critical point of the bienergy
functional for any compact domain 2 C M. As we said in the introduction, we
have for the bienergy the following first variation formula:

dE5(¢:)

dt

= / < T2(¢),V > Vg,
t=0 Q

where v, is the volume element, while V' is the variational vector field along ¢,
and

(2.1) To(¢) = —AT(¢) — trace RN (do, 7(¢))ds.
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Using a standard argument of the theory of strongly elliptic operators (see, for
example, [13]), we have

PROPOSITION 2.1: Let ¢: (M, g) — (N, k) be a biharmonic map. If ¢ is harmonic
on an open subset U of M, then ¢ is harmonic.

COROLLARY 2.2: Let ¢: (M, g) — (N, h) be a biharmonic map. If ¢ is constant
on an open subset U of M, then ¢ is constant.

From now on, in this section, we take as N a manifold N(—1) of constant
negative sectional curvature —1 and we consider the canonical inclusion i: M —
N(-1) of a submanifold M of N.

In order to study the biharmonicity of i, first of all we denote by B the second
fundamental form, by A the shape operator, by H the mean curvature vector
field of M in N(—1), while V+ is the normal connection and A+ is the Laplacian
in the normal bundle of M. Then we have

THEOREM 2.3: The inclusion map i: M — N(—1) is biharmonic if and only if

—~A+H — trace B(—, Ag—) — mH = 0,
(2.2)
2trace AV(L_)H(——) + Zgrad(|H|?) = 0.

Proof: Since
trace RY (di, 7(i))di = mr(i),
the map i is biharmonic if and only if
(2.3) To(i) = trace Vdr(i) — m7(i) = m{trace VdH — mH} = 0.
By a straightforward computation we obtain

trace VdH = —A*H — trace B(—, Ag—) — 2 trace Av(i__)H(—) - %1— grad(|H|?).

Therefore, by replacing the value of trace VdH in (2.3), we have that i is
biharmonic if and only if

(2.4) —ALH —trace B(—, Ay—) — mH = 2trace Av(L_)H(—) + %grad(|H|2).

Since the left-hand side of (2.4) is normal to M and the right-hand side of (2.4)
is tangent, the theorem follows. |

We shall use the above theorem to prove that, in some cases, biharmonicity
and harmonicity are equivalent.

We first consider pseudo-umbilical submanifolds, that is, submanifolds
satisfying Ay = |H|2I. We have
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THEOREM 2.4: Let M be an m-dimensional pseudo-umbilical submanifold of
N(-1) with m # 4. Then M is biharmonic if and only if it is harmonic.

Proof: Let {z*}™, be a system of normal coordinates around an arbitrary point
p € M, and let e, be the corresponding coordinate vector fieids. At p we have

m
trace Ay (=) = > Ve, Aules) - 5 grad(|H|?).

Since M is pseudo-umbilical, the first term in the right-hand side is

ZVeIAH(el) :Zve, (IH%e;) =) eil H e,
=grad(|H|?),

and therefore

(2.5) trace Ay (-) = (1 - %) grad(|H?).

Finally, substituting (2.5) in the second equation of (2.2) we obtain
(4~ m) grad(|H|?) = 0,

so, for m # 4, the mean curvature |H| is constant. Since any biharmonic sub-
manifold with constant mean curvature in a manifold with nonpositive sectional
curvature is harmonic (see [12]), we have the theorem. ]

In particular we have

COROLLARY 2.5: Let v: I — N(—1) be a curve parametrized by arc length.
Then ~ is biharmonic if and only if it is harmonic.

In {3], B. Y. Chen and S. Ishikawa have proved that any biharmonic surface
of the Euclidean 3-dimensional space is minimal, i.e., harmonic. The following
theorem shows that the Chen-Ishikawa theorem remains true if we substitute
the ordinary space with any 3-dimensional space with constant negative sectional
curvature.

THEOREM 2.6: Let M be a surface of N3(—1). Then M is biharmonic if and

only if it is harmonic.

Proof:  Assume that M is a biharmonic submanifold. Suppose that M is non-
harmonic. We shall prove that the mean curvature is constant, which means that
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M is minimal. For this we shall follow closely the proof given by B. Y. Chen and
S. Ishikawa, in (3], for biharmonic surfaces of R®.

Let {X1, X2} be a local orthonormal frame field on M and let % be a unitary
normal vector field. Assume that H = f7, where f € C(M) and f > 0. In this
case conditions (2.2) become

(2.6) Af = (-2-|AP),
(2.7 A(grad f) + fgrad f = 0.

Let U = {p € M|(grad f2)(p) # 0}. We shall show that U = 0.
Assume that U # 0 and put

X, = gradf
7 Tgrad f]
We have
(2.8) Xof =0, gradf=(X1f)Xy,

and the second fundamental form B of M is given by

(29) B(Xl; Xl) = —f777 B(XlaX2) = Oa B(X% XZ) = 3f717
50
(2.10) |A]? = 102

Since N3(—1) has constant sectional curvature and M is a hypersurface, the
Codazzi equation gives

(2.11) Xof = ~4fwi(X1), 38Xi1f = —-4fwi(X>),

where {w!,w?} are the 1-forms dual of {Xy, X2} and w! are the connection 1-
forms given by VX, = ngj. Now, (2.8) and (2.11) imply that w3(X1) = 0 and
dw! = 0. Thus, locally, w! is exact, that is, w! = du for some function u. Since
df = (X1f)w' + (Xof)w?, and Xof = 0, we have that df A w' = 0; this means
that f is a function of u. Denoting by f’ and f” the first and second derivatives
of f with respect to u, the second formula of (2.11) implies

(2.12) 4fwd = -3fw
Again, (2.8) and (2.11) give

(213) 4FAf=3(f) - 4f ",
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and, from (2.6) and (2.10), we obtain
(2.14) 4ff" —3(f)% - 8f2 - 40f* = 0.

If we put (f')? =y, condition (2.14) gives

(2.15) 2]% — 3y = 40f* 4 8f2,

which implies
(2.16) (f)2 =8f1 +8f2 + Cf3?,

for some constant C.
On the other hand, the Gauss equation

K=-1+detA
gives

K=-1-3f2
2.17) {dw% = -Kw! Aw?

where K is the Gaussian curvature of M. From (2.9), (2.12) and (2.17), we
obtain

(2.15) aff" —7(f) + 161 + ?ﬂ =0.
But (2.14) and (2.18) imply
(2.19) (fH? = 145* + %f?

Summing up, conditions (2.16) and (2.19) together say that f must satisfy a
polynomial equation with constant coefficients, that is, f is constant. Hence, M
has constant mean curvature. |

From Theorem 2.6 and Corollary 2.5 we have

THEOREM 2.7: Let M be a submanifold of N3(—1). Then M is biharmonic if
and only If it is harmonic.
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3. Biharmonic submanifolds of S™

The following example arises in the early works on biharmonic maps.

Example 3.1: [9, 10]. Let my, ma be two positive integers such that m = m; +
mg, and let 71,79 be two positive real numbers such that r? + rZ = 1. Then we
have two cases:
1. my # mg, and S™:(r;) x S™2(r,) is a nonharmonic biharmonic submanifold
of S™*1if and only if r, = rp = 1/V/2;
2. my = mg = q, and the following statements are equivalent:
e S9(ry) x S9(ry) is a biharmonic submanifold of S2+1.
e S9(ry) x S9(rz) is a harmonic submanifold of S2¢*1,

o r =1y =1V

Note that in the case of S® the above example gives the minimal Clifford
torus: in fact, as mentioned in the introduction, the only nonminimal biharmonic
surfaces of §3 are the parallel spheres of radius 1/+/2.

The next example was given by the authors in [1].

Example 3.2: Let M = S™(a) x {b} = {p = (z1,...,2™*Lb),|(z1)2 + - - +
(zm™t1)2 = a2, a2+ b2 =1, 0 < a < 1} be a parallel hypersphere of S™*1. Then
M = 8™(a) x {b} is a biharmonic submanifold of $™*! if and only if a = 1/v2
and b= +1//2.

Note that the manifold S™(1/v/2) x §™2(1/v/2), m; # my, is not a pseudo-
umbilical submanifold of S™*!, while the manifold S™(a) x {b} is pseudo-
umbilical.

Except for these, so far we have not seen in the literature other examples of
nonharmonic biharmonic submanifolds of the unit sphere S™.

In this section we propose some methods to construct new examples of bihar-
monic submanifolds. We first recall the following result.

THEOREM 3.3 ([12]): Let M be a submanifold of S™ and let i: M — S™ be the
canonical inclusion. Then the map i is biharmonic if and only if

—ALH — trace B(~, Ag—) + mH =0,
(3.1)
2trace AV(L_)H(—) + 2 grad(|H|*) = 0.

From Theorem 3.3, which is the analogue for S™ of Theorem 2.3, it follows
immediately that a pseudo-umbilical submanifold of S™ whose mean curvature
vector field is unitary and parallel is biharmonic. It is noteworthy that such a
submanifold is actually harmonic in a hypersphere of S™, as shown in the following
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THEOREM 3.4: Let M be a pseudo-umbilical submanifold of S™ with mean vector
field parallel and of norm equal to 1. Then

1. M is biharmonic in S";

2. M is a minimal submanifold in a hypersphere S*~'(1/+/2) C S™.

Proof: We will use an idea of B. Y. Chen and K. Yano (see [4]). We denote by
H the mean curvature vector field of M in R**!. Then, for every p € M, we
have H(p) = H(p) — p, and for any vector field X tangent to M,

Rn+1 =~

VYT H =ViH - A5(X)
=(V¥H-<X,H>p)-V&¥"p
=VxH - Ap(X) - X.
Thus, by the hypothesis in the statement of the theorem, we have
VIH=V'H=0 and Zﬁ =2l

Now we consider the map ¥ € C®(M;R**1) given by ¥(p) = p + %I:T(p). We
have

n n 1 n i
X(0)=VE "o =R p 4 5V% Y H =0,
so U is a constant vector.
Consequently
1 ~ 1
-¥2=—|H?==.
lp— ¥ = J|HI" =3

Thus M C S™(¥;1/v/2). Since |¥| = 1/v/?2, without loss of generality we
can assume that ¥ = (0,...,0,1/4/2) € R**1; so M C S?(¥;1/v/2)NS" =
s"1(1/v3) x {1/v3}.

Finally, since for every p € M, the vector {(p — ¥) is parallel to H (p), it
follows that M is harmonic in S"(¥;1/y/2), and therefore, it is harmonic in

S*H(1/v2) x {1/v2}h. 1

The last theorem suggests that in order to find nonharmonic biharmonic sub-
manifolds of S™, we can search through harmonic submanifolds in hyperspheres.
In fact we have the following

THEOREM 3.5: Let M be a harmonic submanifold of S™(a) x {b}, where a®+b% =
1,0 < a < 1. Then M is a nonharmonic biharmonic submanifold in $**! if and

only ifa=1/V2 and b= £1//2.

Proof: With respect to the standard Euclidean scalar product <, > and to the
rectangular coordinates (z*) of R**2, the set of sections of the tangent bundle of
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S™(a) x {b} is
{X =(X1,..., X" 0) e R" 2zl X! + .. 42" PI X" = ().
Let now & = (z!,...,z"*}, —a2?/b) and p = (z!,...,2"*1,b). Then we have
<6X>=0, <&p>=0, | =a’+a*/? =2 >0,

and therefore ¢ is a section of the normal bundle of S™(a) x {b} in S™+1. If we
put n = ¢ we have

vy =VL - A(X)

Sn+l

£ = —{VR“ £+ <&,X >p)

Rn+2

V(Xl X+ 0) (-'171, cee ", _az/b)

=-X.
c

This implies that A = —1I and V+p =0.

We denote by i: M — S™(a) x {b} and i,: S*(a) x {b} — S™*! the inclusion
maps. Let {X;}-, be a geodesic frame field around an arbitrary point p € M.
At p we have

= 1
r(iof) =Y Vdis(Xi X) =Y = <X, X, > 7= ~Zn#0,

i=1 i
and

7'2(i10i) :—A’I‘(il oi)+m7'(i10i)
2

_ grtt S"+1(_T )_7_”_
va, in c’l - n

== 5 VR Vi - A0 - o

c

Hence the composition cannot be harmonic and it is biharmonic if and only if

a=1/v2and b= +1/V2. ]
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Remark 3.6: Note that if M is harmonic in S"(1/+/2), then it is automatically
pseudo-umbilical in S™*!; moreover, V+7(i; o i) = 0 and |7(iy o i)| = m.
Since the radial projection
S*"—=>S™r) zerrz, r>0,

is homothetic, all harmonic submanifolds in 8™ become, after radial projection,
harmonic submanifolds in S"(1/v/2). Thus, combining Theorem 3.5 and a well
known result of H. B. Lawson, which states that there exist closed orientable
embedded minimal surfaces of arbitrary genus in S (see [11]), we have

THEOREM 3.7: There exist closed orientable embedded nonminimal biharmonic
surfaces of arbitrary genus in S*.

This shows the existence of an abundance of biharmonic surfaces in S%, in
contrast with the case of S3.

Example 3.8: To obtain a nonorientable example we consider the Veronese
surface in S%. The map ¢: R® — R® given by

1 1 1
zl 22 %) = (—=222%, —=2'®, —z'a?,
ot ot e = (o' o'

1 1y2 2y2y 1 142 2\2 312
— - , = + -2 ,1/v/2
5 @ = @), s (@) + ()7 - 2, 1/V2)
defines a nonminimal biharmonic embedding of P2(R) in S°.

At first sight it could seem possible to construct biharmonic submanifolds in
S"+1 from a nonminimal submanifold in S"(1/v/2) x {£1/v/2}. The following
theorem shows that this is not the case.

THEOREM 3.9: Assume that M is a submanifold in S™(1/v/2) x {#:1/+/2}. Then
M is biharmonic in S™*! if and only if it is harmonic in S™(1/v/2) x {£1/v/2}.

Proof: If M C S™a) x {b}, we have 7(ij oi) = 7(i) — 25 # 0 and
(35  mlivoi) =) +m(1- l)r(i) + 1{|T(i)|2 L 1}
a? c c?
When a = 1/v/2 and b = +1/+/2 condition (3.2) reduces to
(i o) = (i) - mr(i) + [r(®*n. W

The same argument as in Theorem 3.5 leads to the following
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PRrROPOSITION 3.10: Let M be a harmonic submanifold of S™'(r1), with0 < m <
ny, or M = S™(ry), and let b € S™(ry), where r? + 12 = 1 and n = ny + ns.
Then M x {b} is harmonic in S™(ry) x S"2(rs), and nonharmonic biharmonic in
S”*1 if and only if ry = 1y = 1/V/2.

The biharmonic submanifolds that we have produced so far are all pseudo-
umbilical. We want now to find examples of biharmonic submanifolds in §” that
are not of this type.

With this aim, let ny, 7y be two positive integers such that n = ny+n9, and let
71,72 be two positive real numbers such that rZ + r2 = 1. Let My be a minimal
submanifold of S™(r;) of dimension my, with 0 < m; < ny, and let M; be a
minimal submanifold of S$"2(ry) of dimension mgy, with 0 < ms < ns. Then we
have the following

THEOREM 3.11: The manifold M, x My is a nonharmonic biharmonic subman-
ifold of S+ if and only if 11 = 3 = 1/v/2 and m; # m,.

Proof: The proof is similar to that of Theorem 3.5. |

Remark 3.12: When ry = ry = 1/\/5 and m; # mg, M1 x Mj is not pseudo-
umbilical in §7*1.

Finally, as in Theorem 3.9, we obtain

THEOREM 3.13: Let nq,ny be two positive integers such that n = n; + ng, and
let M, be a submanifold 0fS"1(1/\/§) of dimension m,, with 0 < m; < nq, and
let M be a submanifold of S™2(1/+/2) of dimension mg, with 0 < my < na. Then
M, x M, is biharmonic in S™*! if and only if

'rz(il) + (WLQ - m1)7'(i1) =0,
72(iz) + (m1 — ma)7(i2) = 0,

I7(i)| = [ (i2)I,
where iy: My — S™(1/+/2) and i3: M, — S™(1/+/2) are the canonical inclusions.

Of course, if M; is harmonic in $"1(1/v/2), then My x M; is biharmonic in
S™+1 if and only if M, is harmonic in S"2(1/v/2).

4. Biharmonic curves in S™

In this last section we consider biharmonic curves in §™. In order to derive the
differential equation of nonharmonic biharmenic curves we prove the following
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PROPOSITION 4.1: Let ¢: (M,g) — S™ be a Riemannian immersion and let
¢ = io ¢, where i: S — R™*! is the canonical inclusion. Then we have

(4.1) 7a(¢) = Ta(p) + 2m7(p) + {2m® — |7()*}.

Proof: With respect to a system of normal coordinates with origin at an arbi-
trary point p € M we have, at p,

(42) 72(8) = 3 Vigte) Vasie)T(9) + m7(9)-

Since 7(p) = 7(¢) — myp, we obtain

Vs (@) = ‘15;;‘)7(¢>—B(d¢(ez>,v(¢>>
yR™

V) T() = VB (7(p) + ma),

and therefore, at p, we have
Z Visten VapenT(®)
= Z{v%};?; Viioten (T(9) +ma) = B(dg(es), Vi, m(6))}
=71o(p) + m7(p) + Z < d(es), Vi;(e,)T(@ > .

But
Z < dg(en), Vig(enT(9) >=— [T(®)]* = —|7(p) + mol?

~ (@) + m2.

Hence

> Vioten Vase)(®) = 12(0) + m7(0) + (=|r()* + m?)e.
Now we replace the value of ), V%(&)Vig(el)r(@ in (4.2), and we obtain (4.1).
]

When M is a curve, the biharmonic equation given by the vanishing of (4.1)
gives the desired differential equation.

COROLLARY 4.2: Let y: I — S™ C R**! be a curve parametrized by arc length.
Then « is biharmonic in S™ if and only if

v /" 2 _
(4.3) YV 429"+ (1 - kg)y =0,
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where k2 = |V5/+'|? is the square of the geodesic curvature of y in S™.

Equation (4.3) can be integrated. This is because the geodesic curvature &g of
v is constant.

PROPOSITION 4.3: Let v: I — S™ C R**! be a nonharmonic biharmonic curve
parametrized by arc length. Then kg is constant and 0 < |kg| < 1.

Proof:  From the second equation of (3.1) we obtain that k, is constant. To
prove that 0 < [ky| < 1, we put T = v' and 7(y) = V5 T = kgN. Then |T| = 1
and < N, T >=0. Also, let V%"N = fT + W, where W is a vector field along v
such that < W, T >= 0, and f € C*°(I). Then f = —k,. Next, from

Vi 7(v) = k2T + kW,
it follows that A, (T) = k;T, where A is the shape operator, and V7(y) =
kgW. Since « is biharmonic, we obtain
AtT(y) = 7(7) = B(T, Ar()(T)) = kg(1 — k)N

Now, from the Weitzenbock formula

PAL ) =< AtT(), 7(3) >~V )P,

we get 1 — kz |[W |2, and this completes the proof. |
Since kg is constant, integration of (4.3) is possible and it yields the following

PROPOSITION 4.4: Lety: I — S” C R**t! be a curve parametrized by arc length.
We have two classes of nonharmonic biharmonic curves in S™.
1. When k, = 1 they are circles parametrized by

v(t) = cos(V2t)cy + sin(V2t)ey + e,

where c1, ca, ¢4 are constant vectors orthogonal to each other with |c;|* =
feaf® = Jeaf? = 3.

2. When 0 < kg < 1 they are curves that, following [7, ], we shall call helices,
parametrized by

v(t) = cos(at)cy + sin(bt)co + cos(bt)cs + sin(bt)cy,

where c1, ¢2, c3 and ¢4 are constant vectors orthogonal to each other with
12 = lea|? = [es]? = |ea)? = L, and a® + % = 2, a® # b, In this case
k2=1-a%?€(0,1).
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