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ABSTRACT 

We give some methods to construct examples of nonharmonic biharmonic 

submanifolds of the unit n-dimensional sphere S n. In the case of curves 

in S n we solve explicitly the biharmonic equation. 

1. I n t r o d u c t i o n  

Harmonic maps r (M, g) -+ (N, h) between Riemannian manifolds are the criti- 
1 cal points of the energy E(r  = ~ fM Idr 2 vg, and they are therefore the solutions 

of the corresponding Euler Lagrange equation for the energy. This equation is 

given by the vanishing of the tension field T(r = trace Vdr As suggested by 

J. Eells and J. H. Sampson in [6], we can define the b i e n e r g y  of a map r by 
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1 2 v E2(r = ~ fM IT(r g, and say that  r is b i h a r m o n i c  if it is a critical point of 

the bienergy. 

In [9, 10] G. Y. Jiang derived the first variation formula of the bienergy showing 

that  the Euler-Lagrange equation for E2 is 

(1.1) T2(r = J (v( r  -- 0, 

where J is the Jacobi operator of r The equation v2(r = 0 is called the 

biharmonic equation. 
In a different setting, in [2], B. Y. Chen defined biharmonic submanifolds of the 

Euclidean space as those with harmonic mean curvature vector, and stated the 

conjecture that  any biharmonic submanifold of ]R n is harmonic. As yet the con- 

jecture has not been either proved or disproved, although some positive answers 

are known (see, for example, [5, 8]). 

If  we consider the biharmonic equation r2(r = 0 for isometric immersions into 

the Euclidean space we recover Chen's notion of biharmonic submanifolds, so the 

two definitions agree. 

More generally, for biharmonic maps in a manifold with nonpositive sectional 

curvature, some nonexistence theorems have been already proved. For example, 

in [10], G.Y. Jiang proved that  any biharmonic map from a compact orientable 

manifold to a manifold with nonpositive sectional curvature is harmonic. In the 

case of submanifolds, the third author, in [12], has proved that  any biharmonic 

submanifold with constant mean curvature in a manifold with nonpositive sec- 

tional curvature is harmonic, i.e., minimal. 

In the case dim N = dim M + 1 the above results of G. Y. Jiang and the 

third author are still true with the weaker assumption that  the Ricci curvature 

in nonpositive [12]. 

The first part  of this paper  is devoted to proving some new results of non- 

existence of nonharmonic biharmonic maps to a manifold with constant negative 

sectional curvature. 

Next, we consider the problem of finding examples of nonharmonic biharmonic 

submanifolds of a manifold with positive sectional curvature. The case of S 3 has 

been studied in [1], where the authors have given the classification of nonhar- 

monic biharmonic submanifolds. They are: circles, spherical helices and parallel 

spheres. 

The goal of this paper is to study nonharmonic biharmonic submanifolds of S n, 

for n > 3. In this case the family of such submanifolds is much larger. In fact, 

any minimal submanifold of a certain parallel hypersphere of $n is a nonharmonic 
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biharmonic submanifold of S n (Theorem 3.5). Therefore, by using known mini- 

rnal submanifolds, we can produce a large class of nonharmonic biharmonic sub- 

manifolds. For example, as a consequence of a well known result of Lawson ([11]), 

it turns out that there exist closed orientable nonminimal biharmonic surfaces 

of arbitrary genus in S 4. On the other hand, the minimal Veronese embedding 

of p2 (R) in S 4 produces a nonorientable nonminimal biharmonic submanifold in 
S 5 . 

In the last section we write down explicitly and solve the biharmonic equation 

for curves in S n. 

NOTATION. We shall place ourselves in the C ~ category, i.e., manifolds, 

metrics, connections, maps will be assumed to be smooth. By (M m, g) we shall 

indicate a connected manifold of dimension m, without boundary, endowed with 

a Riemannian metric g. We shall denote by V the Levi-Civita connection on 

(M, g). For vector fields X, Y, Z on M we define the Riemann curvature opera- 

tor by R(X, Y )Z  : [Vx, Vy]Z - V[x,y]Z. The indices i , j ,  k, l take the values 

1 , 2 , . . . , m .  

ACKNOWLEDGEMENT: The third author wishes to thank the Italian C.N.R. for 

a fellowship which made possible his stay in the University of Cagliari, and the 

Department of Mathematics of the University of Cagliari for the hospitality. 

2. N o n e x i s t e n c e  t h e o r e m s  

Let r (M, g) --+ (N, h) be a smooth map between two Riemannian manifolds. 

The tension field of r is given by T(r ---- trace Vdr and, for any compact domain 

Q C_ M, the b i e n e r g y  is defined by 

2Vg. E2(r : 

Then we call b i h a r m o n i c  a smooth map r which is a critical point of the bienergy 

functional for any compact domain f~ C_ M. As we said in the introduction, we 

have for the bienergy the following first variation formula: 

dE2(r t :o = ~ < T2(r Y > Vg, 

where vg is the volume element, while V is the variational vector field along r 

and 

(2.1) T2(r : --AT(C) -- trace Rg(dr T(r162 
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Using a standard argument of the theory of strongly elliptic operators (see, for 

example, [13]), we have 

PROPOSITION 2.1: Let r (M, g) --+ (N, h) be a biharmonic map. I re  is harmonic 

on an open subset U of M,  then r is harmonic. 

COROLLARY 2.2: Let r (M, g) -+ (N, h) be a biharmonic map. I f r  is constant 

on an open subset U of M,  then r is constant. 

From now on, in this section, we take as N a manifold N ( - 1 )  of constant 

negative sectional curvature - 1  and we consider the canonical inclusion i: M --+ 

N ( - 1 )  of a submanifold M of N. 

In order to study the biharmonicity of i, first of all we denote by B the second 

fundamental form, by A the shape operator, by H the mean curvature vector 

field of M in N ( - 1 ) ,  while V • is the normal connection and A • is the Laplacian 

in the normal bundle of M. Then we have 

THEOREM 2.3: The inclusion map i: M -+ N ( - 1 )  is biharmonic i f  and only if 

- A •  - trace B ( - ,  A H - )  -- m H  = O, 

2 t raceAv{_)H(-  ) + ~ grad(]HI 2) = 0. 
(2.2) 

Proof." Since 

trace RN(di,  T(i))di = mT(i), 

the map i is biharmonic if and only if 

(2.3) T2(i) = trace VdT(i) - roT(i) = re{trace V d H  - m S }  = O. 

By a straightforward computation we obtain 

trace V d H  = - A •  - trace B ( - ,  AH--) -- 2 trace Av[L_)H(- ) - ~ grad(IH]2). 

Therefore, by replacing the value of trace V d H  in (2.3), we have that  i is 

biharmonic if and only if 

(2.4) - A •  - trace B ( - ,  A H - )  - m H  = 2 trace Av~_)H(- ) + 2 grad(IHI2)" 

Since the left-hand side of (2.4) is normal to M and the right-hand side of (2.4) 

is tangent, the theorem follows. | 

We shall use the above theorem to prove that,  in some cases, biharmonicity 

and harmon• are equivalent. 

We first consider pseudo-umbilical submanifolds, that is, submanifolds 

satisfying AH = IHI2I. We have 
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THEOREM 2.4: Let M be an m-dimensional pseudo-umbilical submanifold of 

N ( - 1 )  with m ~ 4. Then M is biharmonic if and only if  it is harmonic. 

Proof: Let {xi}~=l be a system of normal coordinates around an arbitrary point 

p E M, and let e, be the corresponding coordinate vector fields. At p we have 

trace Av~_)H(-- ) = E Vr - 2 grad(IHI2)" 

Since M is pseudo-umbilical, the first term in the right-hand side is 

E Ve,Ag(e~) = E Ve, (IH]2ei) = E eilg[2e~ 
i i , 

= grad(]HI2), 

and therefore 

m 
(2.5) trace Av~_)H(- ) = (1 - ~-)  grad(]HI2). 

Finally, substituting (2.5) in the second equation of (2.2) we obtain 

(4 - m) grad([HI 2) = 0, 

so, for m r 4, the mean curvature IH[ is constant. Since any biharmonic sub- 

manifold with constant mean curvature in a manifold with nonpositive sectional 

curvature is harmonic (see [12]), we have the theorem. | 

In particular we have 

COROLLARY 2.5: Let ~/: I --+ N ( - 1 )  be a curve parametrized by arc length. 

Then ~/ is biharmonic i f  and only if  it is harmonic. 

In [3], B. Y. Chen and S. Ishikawa have proved that  any biharmonic surface 

of the Euclidean 3-dimensional space is minimal, i.e., harmonic. The following 

theorem shows that  the Chen-Ishikawa theorem remains true if we substitute 

the ordinary space with any 3-dimensional space with constant negative sectional 

curvature. 

THEOREM 2.6: Let M be a surface of N3( -1 ) .  Then M is biharmonic i f  and 

only i f  it is harmonic. 

Proof: Assume that M is a biharmonic submanifold. Suppose that  M is non- 

harmonic. We shall prove that  the mean curvature is constant, which means that  
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M is minimal. For this we shall follow closely the proof given by B. Y. Chen and 

S. Ishikawa, in [3], for biharmonic surfaces of R 3. 

Let {X1,X2} be a local orthonormal frame field on M and let y be a unitary 

normal vector field. Assume that H = fT/, where f �9 C ~ (M) and f > 0. In this 

case conditions (2.2) become 

(2.6) 

(2.7) 

A/= ( -2 -  [AI2)f, 
A(grad f )  + f grad f = 0. 

Let U = {p �9 Ml(gradf2)(p) # 0}. We shall show that  U = 0. 

Assume that  U r 0 and put 

grad f 
X1 = igrad/1.  

We have 

(2.8) X2f = O, g r a d f  = (Xlf)X1, 

and the second fundamental form B of M is given by 

B(X1, X1) = -f~h B(XI, X2) : 0, B(X2,X2) : 3f~/, (2.9) 

s o  

(2.1o) IAI 2 = 10f 2. 

Since N3( - 1 )  has constant sectional curvature and M is a hypersurface, the 

Codazzi equation gives 

(2.11) X 2 f = - 4 f ~ ( X 1 ) ,  3Xlf=-4fw21(X2), 

where are the 1-forms dual of ( X l , X 2 }  and are the connection 1- 
cdJ . forms given by VX~ = iXj .  Now, (2.8) and (2.11)imply that  w~(X1) = 0 and 

dw I = 0. Thus, locally, w I is exact, that  is, w I = du for some function u. Since 

df = (Xlf)w 1 + (X~f)w 2, and X2f = 0, we have that  df A w 1 = 0; this means 

that  f is a function of u. Denoting by ff  and f "  the first and second derivatives 

of f with respect to u, the second formula of (2.11) implies 

(2.12) 

Again, (2.8) and (2.11) give 

(2.13) 

4fw~ = -3f/w 2. 

4fAf = 3(f') ~ - 4f f", 
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and, from (2.6) and (2.10), we obtain 

(2.14) 4 f f "  - 3( f ' )  2 - 8 f  2 - 40 f  4 = O. 

If we put  (f ,)2 = y, condition (2.14) gives 

dy 
2f-77 -- 3y ~- 40f  4 q- 8 f  2, 

a j  
(2.15) 

which implies 

(2.16) 

for some constant  C. 

(f,)2 = 8f4 + 8f2 -b C f  3/2, 

On the other  hand, the Gauss equation 

K = - 1  + det A 

gives 

(2.17) 

115 

But (2.14) and (2.18)imply 

(2.19) 10f2 (if)2 = 14f4 + 3 - -  . 

Summing up, conditions (2.16) and (2.19) together  say tha t  f must  satisfy a 

polynomial  equat ion with constant  coefficients, tha t  is, f is constant .  Hence, M 

has constant  mean curvature.  | 

From Theorem 2.6 and Corollary 2.5 we have 

THEOREM 2.7: Let  M be a submanifold o f  N 3 ( - 1 ) .  Then M is biharmonic i f  

and only i f  it is harmonic. 

K = - 1  - 3 f  2 
dw 2 = - K w 1 A w 2 

where K is the Gaussian curvature of M.  From (2.9), (2.12) and (2.17), we 

obtain 

16f2  (2.15) 4 f f "  - 7( f ' )  2 + 16f  a + - ~ -  = 0. 
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3. B i h a r m o n i c  s u b m a n i f o l d s  o f  $'~ 

The  following example  arises in the early works on biharmonic  maps.  

Example 3.1: [9, 10]. Let m l ,  m 2  be two posit ive integers such tha t  m = m l  -4- 

m2, and let r l ,  r 2  be two posit ive real numbers  such tha t  r 2 + r 2 = 1. Then  we 

have two cases: 

1. m l  ~ m2, and Sml ( r l )  • Sm2(r2) is a nonharmonic  b iharmonic  submanifold  

of  S m+l if and only if r l  = r2 = l /v /2 ;  

2. m l  = m2 = q, and the following s ta tements  are equivalent: 

�9 Sq(r l )  x Sq(r2) is a b iharmonic  submanifold  of S 2q+1. 

�9 Sq(r l )  • Sq(r2) is a harmonic  submanifold  of S 2q+1. 

�9 rl  = r 2  = 1 / V ~ .  

Note tha t  in the case of S 3 the above example  gives the min imal  Clifford 

torus: in fact, as ment ioned in the introduct ion,  the only nonminimal  b iharmonic  

surfaces of S 3 are the parallel spheres of radius 1 / v ~ .  

The  next  example  was given by the authors  in [1]. 

Example 3.2: Let M -- Sm(a) • {b} = {p = ( x l , . . . , x m + l , b ) ,  I ( x l ) 2 - f  - " ' "  A- 

(xm+l)  2 = a 2, a 2 + b 2 = 1, 0 < a < 1} be a parallel hypersphere  of S,~+1. Then  

M = Sin(a) x {b} is a b iharmonic  submanifold  of S m+~ if and only if a = 1 / v ~  

and b = •  

Note tha t  the manifold sml (1 /x /~)  x sm=(1/v/2) ,  m l  # m2, is not a pseudo- 

umbilical  submanifold  of S re+l, while the manifold S'n(a) x {b} is pseudo- 

umbilical. 

Except  for these, so far we have not seen in the l i terature other  examples  of 

nonharmonic  b iharmonic  submanifolds of the unit  sphere S '~. 

In this section we propose some methods  to construct  new examples  of bihar-  

monic submanifolds.  We first recall the following result. 

THEOREM 3.3 ([12]): Let M be a submanifold o f S  n and let i: M --+ S n be the 

canonical inclusion. Then the map i is biharmonic i f  and only i f  

- A 3 - H  - trace B ( - ,  AH--) + m H  = O, 

(3.1) 2 t r a c e A v ~ _ ) H ( -  ) + ~ grad(IH[ 2) = 0. 

From Theo rem 3.3, which is the analogue for $a  of Theorem 2.3, it follows 

immedia te ly  tha t  a pseudo-umbil ical  submanifold  of S n whose mean  curvature  

vector  field is un i ta ry  and parallel is biharmonic.  I t  is notewor thy tha t  such a 

submanifold  is actual ly  harmonic  in a hypersphere  of S n, as shown in the following 
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THEOREM 3.4: Let M be a pseudo-umbilical submanifold o f S  n with mean vector 

field parallel and of  norm equal to 1. Then 

1. M is biharmonic in S'~; 

2. M is a minimal  submanifold in a hypersphere Sn- l (1 /V~)  C S n. 

Proof: We will use an idea of B. Y. Chen and K. Yano (see [4]). We denote by 

/~ the mean curvature vector field of M in 1R ~+1. Then, for every p E M, we 

have _~(p) = H(p)  - p, and for any vector field X tangent to M, 

IRn+ 1 
V x  - 5 # x )  

= ( G ~  < x ,  H > p) - v x~ 

=V~:H - A,-I(X)  - X .  

Thus, by the hypothesis in the statement of the theorem, we have 

V • 1 7 7  and A ~ = 2 I .  

Now we consider the map �9 �9 C ~ 1 7 6  u+l) given by ~(p) = p + �89 We 

have 
~l~n + 1 R n + l  1 Va~+l 

X ( ~ ) = V x  ~ = V x  p + ~  x H = 0 ,  

so �9 is a constant vector. 

Consequently 

Thus M c S'~(~; 1 /v~) .  

1 1 
I P -  ~12 ~lgl 2 

Since I~[ = 1/x/2, without loss of generality we 

can assume that  @ = (0 , . . . , 0 ,  I /x/2) E ~;~n+l; SO M C Sn(@;1/v/2)A S n -- 

S~-l(1/vf2)  • {1/v~}.  

Finally, since for every p E M, the vector (p - ~)  is parallel to J~(p), it 

follows that M is harmonic in S"(~;  1/x/2), and therefore, it is harmonic in 

S~ - I ( 1 /v~ )  • {l/x/2}. II 

The last theorem suggests that in order to find nonharmonic biharmonic sub- 

manifolds of S '~, we can search through harmonic submanifolds in hyperspheres. 

In fact we have the following 

THEOREM 3.5: Let M be a harmonic submanifold of Sn(a) • {b}, where a2+b 2 = 

1, 0 < a < 1. Then M is a nonharmonic biharmonic submanifold in S '~+1 i f  and 

only i f  a = 1 / v ~  and b = -4-1lye. 

Proof: With respect to the standard Euclidean scalar product <, > and to the 

rectangular coordinates (x/) of R n+2 , the set of sections of the tangent bundle of 
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S"(a)  x {b} is 

{ X  = ( X 1 , . . . , X  n+l ,O)  E ~ n + 2 [ x l X  1 2F . .  ._~ xn+lXn..{-1 = 0}.  

Let now { = ( x l , . . . ,  x n+l, -a2/b) and p = ( x l , . . . ,  x n+l, b). Then we have 

< ~ , X > : O ,  < G p > = O ,  1~]2=a2+aa/b2:c 2, c > O ,  

and therefore { is a section of the normal  bundle of Sn(a) x {b} in S ~+1. If  we 

put  ~1 = ~ we have 

~n-~l 
V x , / = V } ~ / -  A(X) 

1 $ , , + ,  1 R . + 2  =TVx  :7{Vx 
1--R"+~ , 1 

: c V ( X 1  ..... X n+1,0) ( X , . . . ,  :r, n+ l,  -a2 /b) 

1 
: - - X .  

C 

This implies tha t  A = - ~ I  and V •  = 0. 

We denote by i :  M -~ S'~(a) x {b} and i1: S~(a) x {b} --+ S n+l the inclusion 

maps. Let {Xi}i~=l be a geodesic frame field around an arbi t rary  point  p E M.  

At p we have 

v( i l  o i )  ~-~Vdil(Xi,Xi)  = E 1 m : - -  < X ~ , X ~ > 7 / = - - - ~ / r  
c c i=l i 

and 
T2(il o i )  = - -  ~T( i l  o i) + mT(i l  o i) 

sn+l ~n+1 / m ~ 2  

$ 

m 2 
c v x ,  tvx, n A(X0] 

i 
_ _  m ~n+l rr~ 2 

i 

C 

Hence the composit ion cannot  be harmonic and it is biharmonie if and only if 

a : 1/V'2 and b • + l / v ~ .  | 
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Remark 3.6: Note that if M is harmonic in Sn(1/x/2), then it is automatically 

pseudo-umbilical in Sn+l; moreover, V-LT(il o i) = 0 and I~-(il o i ) l =  m. 

Since the radial projection 

S n -+Sn( r )  x ~ r x ,  r > O ,  

is homothetic, all harmonic submanifolds in S ~ become, after radial projection, 
harmonic submanifolds in S~(1/v~).  Thus, combining Theorem 3.5 and a well 

known result of H. B. Lawson, which states that there exist closed orientable 
embedded minimal surfaces of arbitrary genus in S 3 (see [11]), we have 

THEOREM 3.7: There exist dosed orientable embedded nonminimal biharmonic 

surfaces of  arbitrary genus in S 4. 

This shows the existence of an abundance of biharmonic surfaces in S 4, in 
contrast with the ease of S 3. 

Example 3.8: To obtain a nonorientable example we consider the Veronese 
surface in S 4. The map r ~3 __+ ~6 given by 

2 ~ ( ( x 1 )  2 -  (x2)2), 6-~((x1)2 + (x2) 2 -  2(x3)2), 1/X/2) 

defines a nonminimal biharmonic embedding of P2(R) in S 5. 

At first sight it could seem possible to construct biharmonic submanifolds in 
S n+l from a nonminimal submanifold in S~(1/v~) x {• The following 
theorem shows that this is not the case. 

THEOREM 3.9: Assume that M is a submanifold in sn(1/v~) • { ~ l / v ~ ) .  Then 

M is biharmonic in S '~+~ i f  and only i f  it is harmonic in S'~(1/v~) x {•  

Proo~ If M C S " ( a )  • {b} ,  we  have  ~ ( i l  o i) = ~( i )  - ~ ,~  # 0 and  

(3.5) T2(i I O ') . . . .  T2( ')+ m(1  a ~ ) T ( i ) +  ! {  I~-(i)l 2 m2c2 (c 2 - 1)}~. 

When a -- 1/x/~ and b = + l / x / 2  condition (3.2) reduces to 

T2(i~ o i) = T2(1) -- m r ( i )  + [T(i)I2V. | 

The same argument as in Theorem 3.5 leads to the following 
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PROPOSITION 3.10: Le t  M be a harmonic  submani fold  of Sn'(rl) ,  with  0 < m < 

nl,  or M = S n l ( r l ) ,  and let  b E sn2(r2), where r21 + r 2 = 1 and n = n l  + n2. 

Then M x {b} is harmonic  in Sm(r l )  • sn~(r2), and nonharmonic  biharmonic in 

S n+l i f  and only  i f  r l  = r2 = 1 / v ~ .  

The biharmonic submanifolds that  we have produced so far are all pseudo- 

umbilical. We want now to find examples of biharmonic submanifolds in $~ that  

are not of this type. 

With this aim, let nl ,  n2 be two positive integers such that  n = nl  +n2,  and let 

r l ,  r2 be two positive real numbers such that  r 2 + r 2 = 1. Let M1 be a minimal 

submanifold of S ~ ( r l )  of dimension ml ,  with 0 < m x  ( nx, and let M2 be a 

minimal submanifold of S'~(r2) of dimension m2, with 0 < m2 < n2. Then we 

have the following 

THEOREM 3.11: The mani fold  M1 x M2 is a nonharmonic  biharmonic subman-  

ifold o f S  ~+1 i f  and only  i f  r l  -- r2 = 1 / v ~  and m l  ~ m2. 

Proo~ The proof is similar to that  of Theorem 3.5. | 

R e m a r k  3.12: When rl  : r2 --- 1/v/2 and ml  ~ m2, M1 • M2 is not pseudo- 

umbilical in S n+l. 

Finally, as in Theorem 3.9, we obtain 

THEOREM 3.13: Let  n l ,  n2 be two posi t ive  integers such that  n = n l  q- n2, and 

let  M1 be a submanl fo ld  o f  S n l ( 1 / v ~ )  o f  dimension m l ,  wi th  0 < m l  < n l ,  and 

let  M2 be a submani fo ld  o f  S ~ ( 1 / v ~ )  o f  dimension m2, wi th  0 < m2 < n2. Then 

M1 x M2 is biharmonic in S '~+1 i f  and only  i f  

{ T2(il) + (m2 - ml)T(il) : 0, 
T2(i2) -[- ( m l  --  m 2 ) T ( i 2 )  : 0, 
[T ( i l )  I : [T(i2)[ ,  

where i1:M1 ~ Sn l (1 /v~)  and i2:M2 -+ Sn2(1/v/2) are the canonical inclusions. 

Of course, if M1 is harmonic in Snl(1/v/2), then M1 • M2 is biharmonic in 

$n+1 if and only if M2 is harmonic in S~: (1 /v~) .  

4. B i h a r m o n i c  c u r v e s  in Sn 

In this last section we consider biharmonic curves in S n. In order to derive the 

differential equation of nonharmonic biharmonic curves we prove the following 
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PROPOSITION 4.1: Let  r ( M , g )  --> S n be a Riemannian immersion and let 

= i o r where i: S n -+ R n+l is the canonical inclusion. Then we have 

(4.1) T2(r = T2(~) + 2mT(~) + {2m 2 - IT(~)I2}~. 

Proof'. With  respect to a system of normal  coordinates with origin at an arbi- 

t ra ry  point  p E M we have, at  p, 

(4.2) ,~(~) = ~ v~; (~ , )v~; (~) , ( , )  + m~(~). 
i 

Since T(~) = T(r -- m~,, we obtain 

s n  ~ n + l  
Vdr162 ) =Vd~(~,)7"(r ) -- B(dr  T(r 

=Va~(e,)T(r ) = Vd~(e,)(T(~0) + mx) ,  

and therefore, at p, we have 

S ~ S ~ 

i 
r--~_ ~ n + l  ~n+ l  sn 

= )_,{Vd~(~,)Vd~(~,)(T(~O) + rex) -- B(dr  Var162 } 
i 

s ~ ----T2(~0) + mT(~O) + E < dr Vdr162 > ~o. 

But  

Hence 

~n 
E < de(e,) ,  Vdr162 ) > =  -- IT(r 2 = --Ir(~0) + m~ol 2 

i 

= _ i~(~)l~ + ,~2. 

E S~ Sn Vd~(e,)Vd,r162 = ~ ( ~ )  + m~(~) + (-L~(~)? + "~)~. 

S ~ S n Now we replace the value of ~-'~ Vd,(e,)Vdr162 in (4.2), and we obtain (4.1). 
| 

When M is a curve, the biharmonic equation given by the vanishing of (4.1) 

gives the desired differential equation. 

COROLLARY 4.2: Let  "y: I ---> S ~ C R n+l be a curve parametrized by arc length. 

Then "y is biharmonic in S n i f  and only i f  

(4.3) .y,v + 2 7 " +  (1 - k~)'y = O, 
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where k~ --- [V~'9,'[ 2 is the square o f  the geodesic curvature o f  7 in S n. 

Equat ion  (4.3) can be integrated.  This is because the geodesic curvature  kg of 

7 is constant .  

PROPOSITION 4.3: Let  7: I -+ S n c R n+l be a nonharmonic biharmonic curve 

parametr ized by arc length. Then kg is constant and 0 < [kg[ <_ 1. 

Proof: From the second equat ion of (3.1) we obta in  tha t  kg is constant .  To 

prove tha t  0 < [kg[ _< 1, we put  T = 9,' and 7(7) -- VSTnT -- kgN.  Then  IT[ = 1 

and  < N,  T > =  0. Also, let ~7~T~N = f T  + W ,  where W is a vector  field along 9, 

such tha t  < W , T  > =  0, and f E C~ Then  f -- - k g .  Next,  f rom 

vF~(9,) -- -kiT + ksW, 

it follows tha t  Ar(7)(T)  = k2T, where A is the shape operator ,  and VT~7(9,) = 

k s W .  Since 9' is biharmonic,  we obtain  

A• = v(9,) - B ( T ,  Ar(7)(T))  = ks(1 - k2)N.  

Now, from the Weitzenb6ck formula 

~ •  I~(~)12 =< ~• T(~) > - IV•  12, 

we get 1 - k~ = [W] 2, and this completes  the proof. | 

Since k s is constant ,  in tegrat ion of (4.3) is possible and it yields the following 

PROPOSITION 4.4: Let  9,: I --~ S n C R ~+1 be a curve parametrized by arc length. 

We have two classes o f  nonharmonic biharmonic curves in S ~. 

1. When  kg = 1 they  are circles parametrized by 

,~(t) = cos (v~t )c l  + s i n ( ~ t ) ~ 2  + c~, 

where c1, e2, c4 are constant vectors orthogonal to each other with [c1[ ~ = 

te212 Ie~l 2 -  
2. When  0 < k s < 1 they  are curves that, following [7], we shall call helices, 

parametr ized by 

9,(t) = cos (a t )o  + sin(bt)c2 + cos(bt)c3 + sin(bt)c4, 

where cl, c2, c3 and c4 are constant vectors orthogonal to each other with 

[Cl]2 ---- 1c2[2 = [c3]2 = 1c412 = 1, and a 2 + b 2 = 2, a 2 7 s b 2. In this case 

k 2 = 1 - a2b 2 E (0, 1). 
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